El Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) lanza una oferta de ocho contratos de Formación de Personal Investigador en el marco de su acreditación de excelencia Severo Ochoa 2024. Las solicitudes para esta convocatoria abrirán en septiembre, y la fecha de incorporación estimada es el mes de diciembre de 2025.
Las personas interesadas deben enviar su CV y carta de motivación a los IPs del proyecto que les interese, indicando el nombre de la oferta en el asunto.
Reafirmando su compromiso con la excelencia científica y la multidisciplinariedad, las ocho ofertas del ICMM-CSIC implican la colaboración y sinergia entre investigadores e investigadoras del centro que trabajan en distintos grupos de investigación. Se trata así de programas transversales de alta calidad científica que proporcionarán a las personas seleccionadas un sello de excelencia en su currículum.
Las ofertas son:
Con Amparo Ruiz Carretero y Miriam Jaafar Ruiz-Castellanos.
The demand for faster, smaller, and more energy-efficient electronic and spintronic devices necessitates new materials. Organic materials are promising due to their flexibility, low-temperature processing, and chemical tunability, offering avenues for flexible electronics and quantum computing. A key emerging field is chiro-spintronics, which explores how electron spins interact with chiral (helical) structures, holding significant potential for data processing and storage. This PhD project will investigate chiral organic materials for spin and charge selective transport, aiming to create next-generation digital materials. This involves designing and synthesizing organic molecules that self-assemble into helical structures, exploiting the Chiral Induced Spin Selectivity (CISS) effect. To characterize these materials, we'll use advanced scanning probe microscopy, specifically magnetic conductive probe-atomic force microscopy (mc-AFM) with a ferromagnetic electrode as a spin analyzer. We will develop the setup for operando measurements under various stimuli (temperature, magnetic fields, light). Complementary studies include electron transport, magneto-optical Kerr effect and experiments at large-scale facilities like synchrotron ALBA. Ultimately, the project aims to identify optimal chiral materials for spin logic devices and establish design rules and fabrication protocols for future digital technology applications.
Con Sara Núñez Sánchez y Sol Carretero Palacios.
El desarrollo de materiales fotónicos basados en sistemas supramoleculares orgánicos ofrece una vía prometedora hacia tecnologías compactas, reconfigurables y libres de metales críticos. Entre ellos destacan los agregados J, estructuras autoensambladas que presentan propiedades excitónicas excepcionales: bandas de absorción estrechas, fuerte acoplamiento excitónico, altas eficiencias cuánticas y funcionalidades de captación de luz. Bajo condiciones específicas, exhiben comportamientos ópticos colectivos similares a los de los metales, convirtiéndose en candidatos idóneos para crear metamateriales orgánicos de nueva generación. Este proyecto plantea un concepto innovador: usar los agregados J no solo como emisores, sino como medios excitónicos y bloques estructurales, integrando simultáneamente la función activa y la arquitectura del metamaterial. Esto permite controlar la densidad local de estados ópticos, dirección, espectro, polarización y quiralidad de la emisión, eliminando la necesidad de nanoestructuras metálicas, reduciendo pérdidas ópticas. La tesis combina modelado numérico (simulaciones FDTD, matriz de transferencia, optimización con algoritmos genéticos e IA) con la fabricación y caracterización experimental (espectroscopía de transmisión, fluorescencia, dicroísmo circular, ATR) de estructuras como nanohilos, arquitecturas quirales, metamateriales hiperbólicos y metasuperficies orgánicas, explorando el control de la emisión excitónica y el acoplo plasmon-excitón.
Con Federico Miguel Serrano Sánchez y Henrik Lyder Andersen.
Topological materials display robust electronic states against disorder and quantized transport properties that hold great promise for quantum computing, spin-charge conversion, and energy-efficient electronics. Quantum metal-insulator transitions, induced by strain, temperature, or doping, enable tunable control of the different electronic phases. The precise nature of these transitions in materials like ZrTe₅ remains unresolved, with reported phases varying from strong and weak topological insulators to Dirac semimetals, driven by subtle lattice distortions such as Peierls transitions or charge-density waves. This PhD project aims to experimentally realize and systematically investigate these topological transitions through the growth of high-quality, defect-free single crystals using Chemical Vapor Transport (CVT). Structural evolution across insulator–metal–semimetal transitions will be analyzed under varying temperature and pressure using synchrotron X-ray diffraction, EXAFS, and total scattering/PDF. The structural characterization will be directly correlated with magnetotransport phenomena, such as anomalous Hall and Nernst effects, to elucidate carrier dynamics and band-inversion mechanisms. Ultimately, this research will establish the foundation for developing strain-engineered sensors, spintronic devices, and Ettingshausen coolers based on topological phase transitions.
Con Felipe Gándara Barragán y Mª Concepción Gutiérrez Pérez.
This PhD project aims to investigate the use of porous crystalline materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), as electrodes in a variety of rechargeable electrochemical energy storage (REES) systems, including supercapacitors and Zn- or Fe-ion batteries. While the potential of MOFs and COFs in energy storage has been increasingly explored, their full implementation remains limited by the difficulty of correlating structural changes during charge/discharge cycles with electrochemical performance. A key challenge lies in understanding how electrolyte ions interact with the crystalline framework during electrochemically driven absorption, adsorption, or insertion processes, which ultimately determine the efficiency and cyclability of REES systems. The originality of this thesis lies in addressing these challenges through the development and application of in situ and operando characterization techniques. Electrochemical cells will be adapted for use with laboratory- and synchrotron-based X-ray powder diffraction to monitor structural changes in real time. These measurements will be complemented by other techniques, such as X-ray absorption spectroscopy (XAS), to provide local atomic-scale insight into the environment of metal centers and other relevant elements under applied potential. Comparison with bulk-state measurements will further clarify the role of the electrode–electrolyte interface during charge/discharge processes
Con Iñigo Bretos Ullívarri y Andrés Castellanos Gómez.
El presente proyecto de tesis abordará el estudio de láminas ultradelgadas de Hf1-xZrxO2 (HZO) con propiedades ferroeléctricas superiores obtenidas mediante ingeniería de deformación y con aplicación potencial en dispositivos electrónicos 2D. La investigación se articulará en torno a tres retos contemplados hoy día en la síntesis, procesado y caracterización de este sistema. Así, para la fabricación de las láminas se utilizarán nuevos métodos en disolución combinados con estrategias de baja temperatura que consigan inducir la cristalización del material a temperaturas compatibles con su integración back-end-of-line (BEOL) en la tecnología CMOS (<400 ºC) y en tecnologías emergentes como la electrónica flexible (<350 ºC). Complementariamente, la elevada versatilidad de estos métodos permitirá crecer láminas ultradelgadas (<20 nm) de HZO con un amplio rango composicional (x=0-1), distintos grados de orientación cristalográfica (policristalina, epitaxial) y sobre substratos de distinta naturaleza (Si, SrTiO3, mica, poliimida) con objeto de estabilizar su estructura ortorrómbica mediante ingeniería de deformación y ajustar así sus propiedades eléctricas. Por último, se aplicará una novedosa técnica electrolítica de delaminado para obtener nanoestructuras de HZO free-standing susceptibles de ser transferidas a sistemas de semiconductores 2D para el diseño y fabricación de dispositivos basados en transistores, memorias o sensores.
Con Irene Palacio Rodríguez y José Ignacio Martínez Ruíz.
This PhD project focuses on the development of advanced portable biosensors using graphene field-effect transistors (g-FETs) for ultra-sensitive, fast, and non-invasive detection of viral pathogens such as HIV and HCV. By combining chemically functionalized graphene surfaces with low-cost electronics and AI, the project aims to deliver real-time, point-of-care diagnostic solutions. The student will participate in both experimental and computational work: electrical characterization of g-FETs, covalent UHV-biofunctionalization of graphene, signal acquisition and sensing of pathogens, design and fabrication of custom PCBs, and implementation of AI algorithms for signal denoising, feature extraction, and automated classification. Research will take place at the highly interdisciplinary ICMM-CSIC, leveraging cutting-edge nanofabrication facilities, biochemical and UHV labs, and GPU-equipped computing resources. Strong collaborations with major hospitals will lead to validate the technology with real clinical samples. Training will span nanoscience, surface chemistry, bioelectronics, and machine learning for biomedical applications. This is a unique opportunity to work at the interface of materials science, biotechnology, advanced electronics and AI, contributing to disruptive diagnostic technologies with direct societal impact. The project also opens potential applications in environmental monitoring and food safety, broadening the reach of this innovative biosensing platform.
Con Berta Gómez-Lor Pérez y Carlos Pecharromán García.
Stimuli-Responsive Molecular Crystals for Energy-Efficient Photonic and Actuating Composites. This PhD project focuses on developing stimuli-responsive composite materials incorporating molecular crystals (MCs). The length and lack of point symmetry of the selected organic molecules allows many different ways of packings, corresponding to different crystalline polymorphs. As not all the crystalline configurations are equally efficient, phase transitions between different molecular packing are associated to giant electronic and/or volume density variations, (around ~2%) introducing huge changes in optical and mechanical properties (these are known as “martensitic transformation”). These PTs occur at relatively low temperatures (~100 °C), making them easily triggered by light, mechanical stress, or chemical potentials. However, MCs face challenges such as low production rates and limited chemical stability. This project aims to overcome these by embedding MCs in polymeric or hybrid matrices, enhancing stability, scalability, and functionality. These composites can exhibit light-triggered actuation, pressure-sensitive fluorescence, and tunable optical properties. The project will explore: (1) MC-polymer metamaterials for actuators, (2) fluorescent composites for sensing/labeling, (3) MC-metal nanoparticle hybrids for plasmonic heating, and (4) photonic structures via nanofabrication. This project offers the PhD student multidisciplinary training in molecula
Con Pedro David García Fernández y Xi Chen.
Can we exploit the interaction between light and thermal motion for AI hardware? We have established an experimental platform at ICMM demonstrating physical reservoir computing based on optomechanical interaction in silicon photonic nanostructures. This PhD project aims to master this AI-hardware approach and expand it through machine learning control strategies. The student will master experimental techniques to characterize optomechanical nonlinear effects and develop control techniques for efficient reservoir computing. These systems exhibit complex nonlinear behavior—multistability, bifurcations, chaos—exploitable for signal processing, forecasting, and pattern recognition with reduced energy consumption. Core objectives include characterizing nonlinear light transmission, validating computational tasks (prediction, classification), and developing ML-based control schemes that tune system parameters (detuning, optical power, feedback) to maximize performance. We will use reinforcement learning and neural networks to engineer optical control. The project covers classical to near-quantum regimes, emphasizing optimal control combined with data-driven learning. The student will lead experimental work while contributing to theoretical modeling, ensuring continuous theory-experiment interaction.
Contacto | Accesibilidad | Aviso legal | Política de Cookies | Protección de datos