English | Intranet
     

¡Bienvenidos a espacio-ICMM!

A través de esta cuenta de slack espacio-ICMM podrás navegar por el canal de funk, padel, fútbol, baile, articles-icmm, scientic-questions y muchas cosas más tales como ayuda a los nuevos icmm-nautas. También puedes abrir tu propio canal #canal para encontrar gente que comparta tus intereses. ¡Te esperamos! Leer más

Acerca del ICMM

El Instituto de Ciencia de Materiales de Madrid (ICMM) es un Instituto del Consejo Superior de Investigaciones Científicas (CSIC), perteneciente al Área de Materia.

 

Nuestra misión es generar nuevos conocimientos básicos y aplicados sobre materiales y procesos con alto valor añadido y su transferencia a los sectores productivos de ámbito local, nacional y europeo. Estamos involucrados en la formación de nuevos profesionales en la investigación en materiales, y en la diseminación del conocimiento científico.

 

Acogemos la diversidad y defendemos la Ciencia inclusiva como única Ciencia posible 

Cómo llegar


Vídeo de presentación del Instituto

Próximos Eventos

SEP30|12:00

Exploring spin physics with topological materials
Hugo Dil  leer más

Noticias

Lorena Pardo galardonada en XV National Meeting on Electroceramics con el Epsilon de Oro por su productiva carrera dedicada a las electroceramicas

Leer más

 

How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios

Gavilan, H; Simeonidis, K; Myrovali, E; Mazario, E; Chubykalo-Fesenko, O; Chantrell, R; Balcells, L; Angelakeris, M; Morales, MP; Serantes, D



The use of magnetic nanoparticles (MNPs) to locally increase the temperature at the nanoscale under the remote application of alternating magnetic fields (magnetic particle hyperthermia, MHT) has become an important subject of nanomedicine multidisciplinary research, focusing among other topics on the optimization of the heating performance of MNPs and their assemblies under the effect of the magnetic field. We report experimental data of heat released by MNPs using a wide range of anisometric shapes and their assemblies in different media. We outline a basic theoretical investigation, which assists the interpretation of the experimental data, including the effect of the size, shape and assembly of MNPs on the MNPs’ hysteresis loops and the maximum heat delivered. We report heat release data of anisometric MNPs, including nanodisks, spindles (elongated nanoparticles) and nanocubes, analysing, for a given shape, the size dependence. We study the MNPs either acting as individuals or assembled through a magnetic-field-assisted method. Thus, the physical geometrical arrangement of these anisometric particles, the magnetization switching and the heat release (by means of the determination of the specific adsorption rate, SAR values) under the application of AC fields have been analysed and compared in aqueous suspensions and after immobilization in agar matrix mimicking the tumour environment. The different nano-systems were analysed when dispersed at random or in assembled configurations. We report a systematic fall in the SAR for all anisometric MNPs randomly embedded in a viscous environment. However, certain anisometric shapes will have a less marked, an almost total preservation or even an increase in SAR when embedded in a viscous environment with certain orientation, in contrast to the measurements in water solution. Discrepancies between theoretical and experimental values reflect the complexity of the systems due to the interplay of different factors such as size, shape and nanoparticle assembly due to magnetic interactions. We demonstrate that magnetic assembly holds great potential for producing materials with high functional and structural diversity, as we transform our nanoscale building blocks (anisometric MNPs) into a material displaying enhanced SAR properties.

Nanoscale

Synthesis routes followed to obtain MNPs with different shapes: indirect hydro/solvothermal-based routes (yielding disks and spindles), direct solvothermal-based route (yielding flowers) and direct oxidative precipitation route (yielding nanocubes). TEM images show the well-defined shape of the MNPs: (a) disks 90 × 17 nm; (b) disks 155 × 27 nm; (c) spindles 60 × 23 nm; (d) spindles 250 × 50 nm; (e) nanoflowers 27 nm; (f) nanoflowers 130 nm; (g) nanocubes 22 nm and (h) nanocubes 44 nm.

ICMM-2021 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, España. Tel: +34 91 334 9000. info @ icmm.csic.es