Welcome to espacio-ICMM!

Through this ICMM space slack account you will be able to navigate the funk, padel, soccer, dance, articles-icmm, scientic-questions channel and many other things such as helping the new icmm-nautas. You can also open your own #channel to find people who share your interests. Join us! Read more


The Instituto de Ciencia de Materiales de Madrid (ICMM) is an institute of the Consejo Superior de Investigaciones Cientificas (CSIC) (Spanish National Research Council) founded in December 1986, that belongs to the Area of Science and Technology of Materials, one of the eight Areas in which the CSIC divides its research activities.


Our mission is to create new fundamental and applied knowledge in materials of high technological impact, their processing and their transfer to the productive sectors at local, national and European scales (the true value of materials is in their use), the training of new professionals, and the dissemination of the scientific knowledge.

How to arrive

Forthcoming Events


The Dirac Equation in Condensed Matter Physics
Alberto Cortijo Fernández  read more


Resonant magneto-optically active structures
Antonio García Martín  read more


Designing spin-spin interactions within the ultrastrong light- matter coupling
David Zueco  read more

Strain-induced bound states in transition-metal dichalcogenide bubbles

L. Chirolli, E. Prada, F. Guinea, R. Roldán and P. San-Jose

We theoretically study the formation of single-particle bound states confined by strain at the center of bubbles in monolayers of transition-metal dichalcogenides (TMDs). Bubbles ubiquitously form in two-dimensional crystals on top of a substrate by the competition between van der Waals forces and the hydrostatic pressure exerted by trapped fluid. This leads to strong strain at the center of the bubble that reduces the bangap locally, creating potential wells for the electrons that confine states inside. We simulate the spectrum versus the bubble radius for the four semiconducting group VI TMDs, MoS2, WSe2, WS2 and MoSe2, and find an overall Fock–Darwin spectrum of bubble bound states, characterised by small deviations compatible with Berry curvature effects. We analyse the density of states, the state degeneracies, orbital structure and optical transition rules. Our results show that elastic bubbles in these materials are remarkably efficient at confining photocarriers.

2D Materials

ICMM-2019 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain. Tel: +34 91 334 9000. info@icmm.csic.es