Welcome to espacio-ICMM!

Through this ICMM space slack account you will be able to navigate the funk, padel, soccer, dance, articles-icmm, scientic-questions channel and many other things such as helping the new icmm-nautas. You can also open your own #channel to find people who share your interests. Join us! Read more


The Instituto de Ciencia de Materiales de Madrid (ICMM) is an institute of the Consejo Superior de Investigaciones Cientificas (CSIC) (Spanish National Research Council) founded in December 1986, that belongs to the Area of Science and Technology of Materials, one of the eight Areas in which the CSIC divides its research activities.


Our mission is to create new fundamental and applied knowledge in materials of high technological impact, their processing and their transfer to the productive sectors at local, national and European scales (the true value of materials is in their use), the training of new professionals, and the dissemination of the scientific knowledge.

How to arrive

Forthcoming Events


Revealing the fine structure of Andreev bound states in hybrid nanowires
Alfredo Levy Yeyati   read more


Fabricación de nanodispositivos electrónicos de materiales bidimensionales mediante la nanolitografía de oxidación local
Arancha Iglesias del Dago  read more


Exotic stationary states in ac-driven open quantum systems: Breakdown of the Floquet-Gibbs distribution
Georg Engelhardt  read more

Huge Photostability Enhancement in Bismuth-Doped Methylammonium Lead Iodide Hybrid Perovskites by Light-Induced Transformation

Javier Bartolomé, Esteban Climent-Pascual, Carlos Redondo-Obispo, Carlos Zaldo, Ángel L. Álvarez, Alicia de Andrés and Carmen Coya

The doping strategy of hybrid perovskites is being extensively explored not only for higher efficiency but also to overcome issues in photovoltaic materials such as self-degradation pathways in an ambient atmosphere or under visible irradiation. Here, BiI3 is introduced in the synthesis of MAPbI3films (MA: CH3–NH3+) to stabilize the material. Around 25% of nominal Bi3+ is accommodated in the perovskite structure, producing a shrinking of the unit cell and a small increase of the band gap. The presence of empty Bi gap states quenches the 770 nm red interband emission and results in a near-infrared emission at 1100 nm. However, high enough visible irradiation density induces a progressive segregation of Bi3+ out of the perovskite lattice and promotes the re-emergence of the red emission. This emission is blue-shifted, and its intensity increases strongly with time until it reaches a saturation value which remains stable in the transformed films for extremely high power densities, around 1000 times higher than for undoped samples. We propose that the underlying processes include the formation of BiI3 and BiOI, probably at the surface of the crystals, hampering the usual decomposition pathways into PbI2 and PbOx for undoped MAPbI3. These results provide a new path for obtaining highly stable materials which would allow an additional boost of hybrid perovskite-based optoelectronics.

Chem. Mater, 2019

ICMM-2019 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain. Tel: +34 91 334 9000. info@icmm.csic.es