Acerca del ICMM

El Instituto de Ciencia de Materiales de Madrid (ICMM) es un Instituto del Consejo Superior de Investigaciones Científicas (CSIC), perteneciente al Área de Ciencia y Tecnología de Materiales.


La misión del ICMM es generar nuevos conocimientos básicos y aplicados en materiales y procesos con alto valor añadido y su transferencia a los sectores productivos de ámbito local, nacional y europeo (el verdadero valor de los materiales está en su uso), la formación de nuevos profesionales en el campo de los materiales y la divulgación del conocimiento científico.


Cómo llegar

Próximos Eventos



Atomic force microscopy dynamic modes for the quantification of nanomechanical properties: From polymers to membrane proteins
Alma Eva Pérez Perrino   leer más


Proximity Effects Induced by Exchange and Spin-Orbit Coupling at Interfaces: Graphene on Metals and Metal-Organic Coordination Networks on Topological Insulators
Andrés Arnau  leer más



Micro-second force spectroscopy

Mingdong Dong  leer más


Cover CrystEngComm. H. Gavilán, M. Puerto Morales. Diseño Arturo Pérez.

Leer más

Back Cover Adv. Func. Mat. E. Ruiz-Hitzky, A. Gómez-Avilés y P. Aranda, ICMM.

Leer más


Compression and ablation of the photo-irradiated molecular cloud the Orion Bar

Javier R. Goicoechea, Jérôme Pety, Sara Cuadrado, José Cernicharo, Edwige Chapillon, Asunción Fuente, Maryvonne Gerin, Christine Joblin, Nuria Marcelino & Paolo Pilleri

The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar1 show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth–Sun distance). Static equilibrium models2,3 used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar4-6 (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions7-9, there is no appreciable offset between the peak of the H2 vibrational emission (delineating the H/H2 transition) and the edge of the observed CO and HCO+ emission. This implies that the H/H2 and C+/C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.

Nature 2016

Figure 1 | Multiphase view of the Orion nebula and molecular cloud. a, Overlay of the HCO+ J = 3–2 emission (red) tracing the extended Orion molecular cloud. The hot ionized gas surrounding the Trapezium stars is shown by the [SII] 6,731 Å emission (green). The interfaces between the ionized and the neutral gas, the ionization fronts, are traced by the [OII] 6,300 Å emission (blue). Both lines were imaged with VLT/MUSE15. The size of the image is approximately 5.8' × 4.6'. BN/KL, Becklin–Neugebauer/Kleinmann–Low star-forming region. b, Close-up of the Orion Bar region imaged with ALMA in the HCO+ J = 4–3 emission (red). The black region is the atomic layer.

Publicaciones destacadas

ICMM-2015 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, España. Tel: +34 91 334 9000. Fax: +34 91 372 0623.