Ugolotti A., Lanzilotto V., Grazioli C., Schio L., Zamalloa-Serrano J.M., Stredansky M., Zhang T., De Simone M., Ferraro L., Floreano L., Coreno M., Puglia C., Di Valentin C.

Journal of Physical Chemistry C

127 , 23 , - (2023)

Melem (2,6,10-triamino-s-heptazine) is the building block of melon, a carbon nitride (CN) polymer that is proven to produce H2from water under visible illumination. With the aim of bringing additional insight into the electronic structure of CN materials, we performed a spectroscopic characterization of gas-phase melem and of a melem-based self-assembled 2D H-bonded layer on Au(111) by means of ultraviolet and X-ray photoemission spectroscopy (UPS, XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In parallel, we performed density functional theory (DFT) simulations of the same systems to unravel the molecular charge density redistribution caused by the in-plane H-bonds. Comparing the experimental results with the spectroscopic DFT simulations, we can correlate the induced charge accumulation on the Naminoatoms to the red-shift of the corresponding N 1s binding energy (BE) and of the Namino1s <U+2192> LUMO+n transitions. Moreover, when introducing a supporting Au(111) surface in the computational simulations, we observe a molecule-substrate interaction that almost exclusively involves the out-of-plane molecular orbitals, leaving those engaged in the in-plane H-bonded network rather unperturbed. © 2023 American Chemical Society. All rights reserved.