Jiménez-Riobóo R.J., Gordillo N., de Andrés A., Redondo-Cubero A., Moratalla M., Ramos M.A., Ynsa M.D.

Carbon

208 , , - (2023)

Diamond properties can be tuned by doping and ion-beam irradiation is one of the most powerful techniques to do it in a controlled way, but it also produces damage and other aftereffects. Of particular interest is boron doping which, in moderate concentrations, causes diamond to become a p-type semiconductor and, at higher boron concentrations, a superconductor. Nevertheless, the preparation of superconducting boron-doped diamond by ion implantation is hampered by amorphization and subsequent graphitization after annealing. The aim of this work was to explore the possibility of creating boron-doped diamond superconducting regions and to provide a new perspective on the damage induced in diamond by MeV ion irradiation. Thus, a comprehensive analysis of the damage and eventual recovery of diamond when irradiated with 9 MeV B ions with different fluences has been carried out, combining Raman, photoluminescence, electrical resistivity, X-ray diffraction and Rutherford Backscattering/Ion-channeling. It is found that, as the B fluence increases, carbon migrates to interstitial sites outside of the implantation path and an amorphous fraction increases within the path. For low fluences (