Cernea M., Radu R., Amorín H., Vasile B.S., Surdu V.A., Trusca R., Gavrila R., Galassi C.

Journal of Alloys and Compounds

952 , , 170041 - (2023)

Motivated by the goal of developing ultralow power, smart and multifunctional nano (micro) electronic devices, research has shown unwavering interest in synthesis methods, architectures and interphase connectivity of composites containing magnetostrictive and piezoelectric phases, known as magnetoelectric (ME) materials. Herein we report on CoFe2O4/0.92Bi0.5Na0.5TiO3–0.08BaTiO3 biphasic ME composites, obtained by sol-gel chemistry, by mixing the precursor sols of the two phases into one precursor sol and further transforming it into gel, with the goal of obtaining homogeneous nanocomposites with magnetoelectric properties. The structural properties, the temperature dependance of dielectric properties, the magnetic and magnetoelectric properties of these biphasic mixtures, with various molar ratios CoFe2O4/BNT–BT0.08 = 0.5:1, 1:1 and 1.5:1, are investigated. It is observed that the amount of CoFe2O4 and the synthesis in situ of these composites influences their macroscopic properties showing a high difficulty of carrying out an efficient poling resulting in small piezoelectric and magnetoelectric response. It was concluded that the synthesis procedure, the type of architecture and the interphase connectivity are of outmost importance for magnetoelectric properties based on lead-free materials. © 2023 Elsevier B.V.