Sekkat A., Weber M., López-Sánchez J., Rabat H., Hong D., Rubio-Zuazo J., Bellet D., Chichignoud G., Kaminski-Cachopo A., Muñoz-Rojas D.

Materials Today Chemistry

29 , , 101431 - (2023)

Copper and binary copper oxide thin films are key materials for microelectronic, optoelectronic, and sensing devices. Herein, we report innovative atmospheric pressure spatial atomic layer deposition processes enabling the facile control over the copper oxidation state. The selective deposition of Cu, Cu2O, and CuO thin films at low temperatures (160–260 °C) has been achieved by using Cu(I)(hfac)(tmvs) as copper source and nitrogen, water, or ozone as coreactants, respectively. The three obtained materials are pure and crystalline, as revealed by X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The deposition mechanism of the Cu, Cu2O, and CuO phases is based on disproportionation, hydrolysis, and oxidation reactions. Interestingly, metallic copper films with resistivity as low as