About

The Instituto de Ciencia de Materiales de Madrid (ICMM) is an institute of the Consejo Superior de Investigaciones Cientificas (CSIC) (Spanish National Research Council) founded in December 1986, that belongs to the Area of Science and Technology of Materials, one of the eight Areas in which the CSIC divides its research activities.

 

Our mission is to create new fundamental and applied knowledge in materials of high technological impact, their processing and their transfer to the productive sectors at local, national and European scales (the true value of materials is in their use), the training of new professionals, and the dissemination of the scientific knowledge.

How to arrive

Forthcoming Events

JUN02/12:00

Spatial variation of a giant spin–orbit effect induces Landau-like levels in graphene
Fabián Calleja  read more

News

 

Ángeles Monge Bravo, del ICMM, Científica de mayo de 2016 en la web de AMIT.

read more

 

3M y el ICMM abren su innovación a Innovasturias. elcomercio.es

read more

Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport

A. C. Aragonès, D. Aravena, J. I. Cerdá, Z. Acís-Castillo, H. Li, J. A. Real, F. Sanz, J. Hihath, E. Ruiz, and I. Díez-Pérez

Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover FeII complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.

Nano Lett., 2016

Schematic representation of the single-molecule junctions studied under two opposite Ni magnetic polarizations (labeled α and β). The paramagnetic [Fe(tzpy)2(NCS)2] complex shows a high conductance switching which depend on the Ni tip spin polarizations (see arrows), while the transport in the diamagnetic [FeLA(NCS)2] complex remains invariable.

Publications Highlights

ICMM-2016 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain. Tel: +34 91 334 9000. Fax: +34 91 372 0623. info@icmm.csic.es