About

The Instituto de Ciencia de Materiales de Madrid (ICMM) is an institute of the Consejo Superior de Investigaciones Cientificas (CSIC) (Spanish National Research Council) founded in December 1986, that belongs to the Area of Science and Technology of Materials, one of the eight Areas in which the CSIC divides its research activities.

 

Our mission is to create new fundamental and applied knowledge in materials of high technological impact, their processing and their transfer to the productive sectors at local, national and European scales (the true value of materials is in their use), the training of new professionals, and the dissemination of the scientific knowledge.

How to arrive

Forthcoming Events

JAN25/12:00

Exploiting polaritonic chemistry to manipulate molecular structure and dynamics
Johannes Feist  read more

FEB02/12:00

Alta-Integración en la Red Eléctrica de las Energías Renovables Intermitentes (eólica, solar-FV y solar CSP)
José Manuel Martínez-Duart   read more

FEB05/12:00

¿Por qué es necesario el 11 de febrero?
Pilar López Sancho  read more

Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials

Riccardo Frisenda, Efrén Navarro-Moratalla, Patricia Gant, David Pérez De Lara,a Pablo Jarillo-Herrero, Roman V. Gorbachev and Andres Castellanos-Gomez

Designer heterostructures can now be assembled layer-by-layer with unmatched precision thanks to the recently developed deterministic placement methods to transfer two-dimensional (2D) materials. This possibility constitutes the birth of a very active research field on the so-called van der Waals heterostructures. Moreover, these deterministic placement methods also open the door to fabricate complex devices, which would be otherwise very difficult to achieve by conventional bottom-up nanofabrication approaches, and to fabricate fully-encapsulated devices with exquisite electronic properties. The integration of 2D materials with existing technologies such as photonic and superconducting waveguides and fiber optics is another exciting possibility. Here, we review the state-of-the-art of the deterministic placement methods, describing and comparing the different alternative methods available in the literature, and we illustrate their potential to fabricate van der Waals heterostructures, to integrate 2D materials into complex devices and to fabricate artificial bilayer structures where the layers present a user-defined rotational twisting angle.

Chem. Soc. Rev.

Deterministic transfer setups. Images of different deterministic placement experimental setups. (a) Experimental setup based on a modification of a metallurgical optical microscope equipped with long working distance objectives. (b) Setup implemented using a zoom lens with coaxial illumination. (c) Deterministic placement setup mounted inside a glovebox to ensure control of the environmental conditions during the transfer process. The stages are fully motorized and they can be controlled with joysticks from outside the glovebox. Panels (a) and (c) are pictures of the transfer setup at Manchester; panel (b) is a picture of the setup at Madrid.

Publications Highlights

ICMM-2018 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain. Tel: +34 91 334 9000. info@icmm.csic.es