English | Intranet
     

Seminarios y Eventos

Seminars and Events

Tesis Doctorales


17 December 2020, 11:00 h. online

Design and development of biomaterials for spinal cord injury repair (Diseo y desarrollo de biomateriales para la reparacin de la mdula espinal lesionada)

Ana Domnguez Bajo
Instituto de Ciencia de Materiales de Madrid, CSIC


Supervisor(s): Dra. M. Concepcin Serrano Lpez-Terradas y Dra. Elisa Lpez Dolado

Actualmente no existe ningn tratamiento eficaz para la lesin medular, caracterizada principalmente por el dao de los axones neuronales y la creacin de un entorno inhibitorio para la regeneracin. En esta tesis, hemos investigado dos plataformas diferentes capaces de actuar como interfaces neurales. Por un lado, hemos estudiado la biocompatibilidad in vitro de nanohilos metlicos que funcionarn como nanoelectrodos dentro de un dispositivo capaz de actuar como bypass en la lesin. Estos nanohilos metlicos se han fabricado por electrodeposicin de nquel (Ni) u oro (Au) sobre una base plana y flexible de Au, dispuestos verticalmente sobre ella. Por otro lado, dos tipos de plataformas 3D fabricadas a partir de xido de grafeno reducido se han implantado crnicamente en un modelo de hemiseccin de la mdula espinal cervical en rata. Los implantes han consistido en una espuma altamente porosa y microfibras integradas en un hidrogel de gelatina. Con respecto a los electrodos metlicos, la composicin qumica y la nanotopografa modulan el comportamiento de las clulas neurales in vitro. Con respecto a los biomateriales de grafeno, ambos implantes han promovido la estabilizacin del tejido espinal lesionado, as como la presencia de estructuras neuronales acompaadas de vasos sanguneos en la lesin. Adems, las espumas de grafeno reducen el dao perilesional y no causan efectos adversos por compresin ni traccin. En conclusin, estos resultados demuestran el potencial de estas plataformas como interfaces neurales para la reparacin de la mdula espinal lesionada.




11 December 2020, 10:00 h. online

Straintronic photodetectors based on 2D materials

Patricia Gant Pinar
Universidad Autnoma Madrid


Supervisor(s): Andrs Castellanos Gmez and Riccardo Frisenda

Since the first fabrication of a transistor in 1947, electronics is been improving its performance by adding more elements to the electronic devices. In order to maintain the level of improvement, the size of their components decreased, which have led to difficulties during the last years. Some strategies to continue the enhancement of electronics can be the study of new materials like 2D semiconductors or including more tuning knobs in the components to increase the functionality of each component. The different options for increasing the responses of the components include the control of different properties (degrees of freedom) of the device through control the valey or spin polarization or applying external deformations leading to valleytronics, spintronics, straintronics respectively.
This thesis develops a proof-of-concept straintronic device, which would proof the viability of this technique to keep the electronic progress. Thus, this device is fabricated with a new semiconductor, which allows us to fabricate this type of device unlike silicon (Si). This new material is a 2D semiconductor from the transition metal dichalcogenides (TMDCs) family, MoS2. Due to the special characteristics of 2D materials, the techniques used for studying and manipulating them are different from the common methods used in 3D semiconductor industry.
We fabricate several MoS2 simple photodetector devices which can be strained. These photodetectors show an optoelectrical response to the strain.
The new design will allow to have components with higher functionalities and the use of 2D materials solve some of the issues lately found in the electronics industry.




04 December 2020, 16:00 h. Saln de Actos

Two-dimensional III-VIA semiconductors and their applications in optoelectronic devices

Qinghua Zhao
Universidad Autnoma Madrid


Supervisor(s): Andrs Castellanos-Gmez y Riccardo Frisenda

Two-dimensional (2D) semiconductors, initialed by the isolation of graphene in 2004, have drawn a great research interest thanks to their remarkable mechanical, electrical, optical, and optoelectronic properties. Their layered structure, originating from the strong in-plane covalent bonds and weak out-of-plane van der Waals interactions, allows such materials being stable with atomically thin geometry. Thanks to the ultrathin nature and dangling-bond-free surface, various advanced heterostructures-based devices with superior performance have been demonstrated without being hampered by their lattice mismatch, which make them as promising candidates for future nano-electronic and optoelectronic applications. As novel 2D members from III VIA semiconducting group, Gallium selenide (GaSe) and Indium selenide (InSe), are barely explored but recently both reach exciting promise in theory achievements and application research. Thanks to their unique electron band structures and strong light-matter interactions, they both are sensitive to external stimuli, which can be advantageous for certain applications but also brings drawbacks for others, thus motivates the goal of this thesis that exploring how the environment, light and strain play roles on the properties of these materials.
This thesis demonstrates the great promise of 2D III-VIA semiconducting materials, especially GaSe and InSe, for future electrical and optoelectronic applications. These results, on the one hand, reveal the important role of traps induced by defects in tailoring the properties of devices based on 2D materials, on the other hand, show the reliability of electronic and optoelectronic properties of van der Waals Schottky contacts, which are both attractive for different applications, such as strain engineering and flexible electronics.




01 December 2020, 11:00 h. Online

Sntesis y Procesado Avanzados de los Nuevos Sistemas Y1-xBixMnO3 y Y1-xBixMn1-xFexO3 Diseados para Presentar Multiferroicidad:Estudio Estructural, Propiedades ferroicas

Jose ngel Quintana Cilleruelo

Universidad Internacional Menndez Pelayo


Supervisor(s): Prof. Dra. Mara Alicia Castro Lozano & Dr. Miguel Alguer Gimnez

La memoria de esta Tesis Doctoral presenta el trabajo de investigacin que describe por primera vez la sntesis de dos sistemas binarios completos con frmulas generales Y1-xBixMn1-xFexO3 (YMnO3 BiFeO3; YMBF) y Y1-xBixMnO3 (YMnO3 BiMnO3; YMBM) por un mtodo mecanoqumico, as como su optimizacin utilizando dos molinos planetarios de distintas caractersticas. Tambin se presenta la caracterizacin estructural de ambos sistemas, el estudio de sus propiedades magnticas y el procesado de materiales cermicos densos pertenecientes al sistema YMBF junto con su caracterizacin elctrica.




30 October 2020, 11:00 h. Online

Reactividad qumica del para-aminofenol en superficies metlicas. Nuevos mecanismos de sntesis sobre superficies

Nerea Ruiz del Arbol Lasagabaster
Universidad Autonoma de Madrid


Supervisor(s): Jose Angel Martn Gago y Paqui Lpez Fagndez






     

ICMM-2021 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, España. Tel: +34 91 334 9000. info @ icmm.csic.es