RSS
 

Archive for septiembre, 2010

Thomas Young

28 sep


A physician, polymath and professor of Natural Philosophy at the Royal Institution, the scientific contributions of Thomas Young (1773-1829) span such diverse fields as the wave theory of light, the elasticity of solids, the surface tension, the theory of color perception, the physiology of vision, medicine, linguistics, and Egyptian hieroglyphics. But also, and that’s why he es here, acoustics, musical harmony and tempered tuning.

With his famous double-slit, Young demonstrated the interference of light and, thus, its wave nature (previously proposed by Hooke, Huygens and Euler). Since Newton’s time the idea that light was made of particles had been prevailing. [A century after Young, Einstein resurrected the particulate nature of light to explain the photoelectric effect, thus contributing to the current understanding of light’s dual wave-particle nature.]

Young’s modulus, relating the strain (deformation) of a body to the applied stress (pressure), is still today a fundamental parameter in the mechanical characterization of a solid. Young’s sensible hypothesis, later developed by Helmholtz, that the human eye has three types of sensors responding to different wavelengths (centered on red, green and violet light) is the base of the trichromatic color vision theory. It was also Young the first who described astigmatism and the one that gave soundness to the idea that the crystalline deforms itself to allow focusing vision at different lengths. He also explained the phenomenon of capillarity, based on the surface tension concept (Young-Laplace equation) and established the equation relating the contact angle between a drop o liquid and a plane surface (Young equation, which becomes the Young-Dupré equation when thermodynamic effects are taken into account).

The proposal of a universal phonetic system (Young was fluent in over a dozen languages, including several dead ones) and his work in deciphering Egyptian hieroglyphics (later used by Champolion to decipher the Rosetta Stone) would serve to put a brilliant end to the contributions of a multifaceted polymath had we already commented on his contributions to music.

Young, who apparently played a wide variety of musical instruments, bagpipe included,[1] proposed a well tempered tuning (“Young’s temperament”) considered by some as an “idealization” of the different “well temperaments” and superior to the tuning method in use today (“equal temperament”). In a different entry we will try to explain what is all about temperament in music and the different systems proposed. By now, it should suffice to say that a well tempered tuning tries to avoid the difficulties in modulation (key change) found in the old Pythagorean and Just tunings (based on a perfect fifth and on a mayor third, respectively). While in the current equal temperament all the keys have the same relations of intervals, the well tempered tunings (Young’s included) build keys that, while affording modulation, are different from one another, and have a “different character” because of their small differences in intervals. For instance, in Young’s temperament a major third in C Major has a frequency ratio different to that of a major third in A Major (this doesn’t holds for the current equal temperament).

The paper in which Young proposes his tuning system[2] was titled Outlines of Experiments and Inquiries Respecting Sound and Light and collects a large number of experiments and reflections on very different topics (acoustics, air dynamics, the nature of sound, harmony, analogies between light and sound). The same issue of the journal contains the Herschel papers describing his discovery of infrared radiation.

Although it is not enough to explain his genius, it won’t be a surprise to konw that, as pointed out by his biographer, Young “adhered strictly through life to the principle of doing nothing by halves”.[3] Which doesn’t seem to be a bad principle for a musician or a scientist.


Médico, erudito, profesor de Filosofía Natural en la Royal Institution, las contribuciones científicas de Thomas Young (1773-1829) abarcan campos tan dispares como la teoría ondulatoria de la luz, la elasticidad de los cuerpos, la tensión superficial, la teoría de la percepción del color, la fisiología de la visión, la medicina, la lingüística y los jeroglíficos egipcios. Pero también, y por eso está aquí, la acústica, la armonía musical y la afinación temperada.

Young, con su famosa doble rendija, demostró el fenómeno de la interferencia de la luz y, con ello, su carácter ondulatorio (propuesto con anterioridad por Hooke, Huygens y Euler). Desde Newton prevalecía, en cambio, la opinión de que su naturaleza era corpuscular, es decir, que la luz está formada por partículas. [Un siglo después, Einstein volvió a resucitar el carácter corpuscular de la luz para explicar el efecto fotoeléctrico, contribuyendo finalmente a la consideración de una naturaleza dual, onda-corpúsculo, de la luz.].

El módulo de Young, que relaciona la deformación de un cuerpo con la tensión a la que es sometida, es aún hoy un parámetro fundamental para la caracterización mecánica de un sólido. La atinada hipótesis de Young, desarrollada después por Helmholtz, de que el ojo humano dispone de tres tipos de sensores capaces de distinguir diferentes longitudes de onda (basadas en rojo, verde y violeta), es la base de la teoría tricromática del color. Fue también Young el primero en describir el astigmatismo y en fundamentar la idea de que el cristalino se deforma para permitir enfocar la visión a diferentes distancias. Explicó, además, el fenómeno de la capilaridad, basándose en el concepto de tensión superficial (ecuación de Young-Laplace) y estableció la fórmula que determina el ángulo de contacto entre una gota de líquido y una superficie plana (ecuación de Young, que cuando se consideran además efectos termodinámicos se convierte en la de Young-Dupré).

La propuesta de un sistema fonético universal (Young hablaba más de una docena de idiomas, incluyendo varias lenguas muertas) y sus trabajos de descifrado de jeroglíficos egipcios (en los que, más tarde, se basaría Champollion para descifrar la piedra Rosetta) terminarían de adornar las contribuciones de un erudito todoterreno que probablemente no tenga parangón en la historia, si no fuera porque no hemos hablado aún de su contribución a la música.

Young, que al parecer tocaba una gran variedad de instrumentos, gaita incluida,[1] propuso un método de afinación bien temperada (“temperamento de Young”) considerado por algunos “una idealización” de los diferentes “buenos temperamentos” y superior a la afinación actual (“temperamento igualado”). En alguna otra entrada intentaremos explicar en qué consiste el temperamento en música y los distintos métodos propuestos. Por el momento baste decir que las afinaciones bien temperadas buscan evitar las dificultades para la modulación (cambio de tono) que presentaban los antiguos sistemas pitagórico (basado en la quinta justa) y justo (basado en la tercera mayor). Mientras que en el temperamento igualado actualmente en uso todas las tonalidades mantienen las mismas relaciones interválicas, las afinaciones bien temperadas (incluida la de Young) construyen tonalidades que permiten la modulación pero son diferentes unas de otras, y tienen “distinto carácter” al presentar pequeñas diferencias interválicas. Por ejemplo, en el temperamento de Young una tercera mayor en Do mayor tiene una relación de frecuencias diferente a la de una tercera mayor en La mayor (esto no ocurre en el sistema de afinación de igual temperamento actualmente en uso).

El artículo en el que Young propone su sistema de afinación [2] se titula Outlines of Experiments and Inquiries Respecting Sound and Light y recoge multitud de experimentos y reflexiones sobre muy diversos temas (acústica, dinámica del aire, naturaleza del sonido, armonía, analogías entre luz y sonido). El mismo volumen de la revista recoge los artículos en los que Herschel describe su descubrimiento de la radiación infrarroja.

Aunque no baste para explicar su genio, al menos no será una sorpresa saber que, como señaló su biógrafo, Young “adhered strictly through life to the principle of doing nothing by halves”.[3] No parece un mal principio, ni para un músico ni para un científico.

[1]Measured Tones. The Interplay of Physics and Music. 2nd ed. Ian Johnston. IOP Pub., Bristol, 2002
[2]T. Young, Philosophical Transactions of the Royal Society of London, Vol. 90 (1800), pp. 106-150
[3]Life of Thomas Young, G. Peacock. J.Murray Ed. London, 1855

 

W.E.E. @ El Mundo

26 sep

Interview at El Mundo Digital, 09/26/2010:

entrevista El Mundo 26092010el mundo entrevista 26092010 parte2el mundo entrevista 26092010 parte3

 
No Comments

Posted in Media

 

Miguel Camblor (MSax)

19 sep

Tenor sax & big beer on stage

Tenor sax of Within Experimental Error and Schizzofunk, Miguel Camblor holds a PhD in Chemistry and is a Research Professor at the Spanish National Research Council (CSIC). An specialist in synthesis, structural and physicochemical characterization and applications of zeolites he has formerly been a Postdoctoral Fulbright Fellow and Visiting Associate in Chemical Engineering at CALTECH and the Head of the R+D department at Industrias Químicas del Ebro.

MSax en El Barco

Photo: Simone djfrat Fratini

Researcher ID A-5663-2008

PUBLICATIONS indexed by I.S.I. (September 2010)

Sum of the Times Cited : 3,814
Average Citations per Item : 43.34
h-index: 35

1. Title: SYNTHESIS OF A TITANIUMSILICOALUMINATE ISOMORPHOUS TO ZEOLITE-BETA AND ITS APPLICATION AS A CATALYST FOR THE SELECTIVE OXIDATION OF LARGE ORGANIC-MOLECULES
Author(s): CAMBLOR, MA; CORMA, A; MARTINEZ, A; et al.
Source: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS Issue: 8 Pages: 589-590 Published: APR 15 1992
Times Cited: 258
doi: 10.1039/C39920000589

2. Title: THE STATE OF TI IN TITANOALUMINOSILICATES ISOMORPHOUS WITH ZEOLITE-BETA
Author(s): BLASCO, T; CAMBLOR, MA; CORMA, A; et al.
Source: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Volume: 115 Issue: 25 Pages: 11806-11813 Published: DEC 15 1993
Times Cited: 207
doi: 10.1021/ja00078a020

3. Title: ACTIVITY OF TI-BETA CATALYST FOR THE SELECTIVE OXIDATION OF ALKENES AND ALKANES
Author(s): CORMA, A; CAMBLOR, MA; ESTEVE, P; et al.
Source: JOURNAL OF CATALYSIS Volume: 145 Issue: 1 Pages: 151-158 Published: JAN 1994
Times Cited: 184
doi: 10.1006/jcat.1994.1017

4. Title: SYNTHESIS OF TITANOALUMINOSILICATES ISOMORPHOUS TO ZEOLITE BETA, ACTIVE AS OXIDATION CATALYSTS
Author(s): CAMBLOR, MA; CORMA, A; PEREZPARIENTE, J
Source: ZEOLITES Volume: 13 Issue: 2 Pages: 82-87 Published: FEB 1993
Times Cited: 183
doi:10.1016/0144-2449(93)90064-A

5. Title: Direct synthesis and characterization of hydrophobic aluminum-free Ti-beta zeolite
Author(s): BLASCO, T; CAMBLOR, MA; CORMA, A; et al.
Source: JOURNAL OF PHYSICAL CHEMISTRY B Volume: 102 Issue: 1 Pages: 75-88 Published: JAN 1 1998
Times Cited: 173
doi: 10.1021/jp973288w

6. Title: INFRARED SPECTROSCOPIC INVESTIGATION OF TITANIUM IN ZEOLITES – A NEW ASSIGNMENT OF THE 960 CM(-1) BAND
Author(s): CAMBLOR, MA; CORMA, A; PEREZPARIENTE, J
Source: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS Issue: 6 Pages: 557-559 Published: MAR 21 1993
Times Cited: 157
doi: 10.1039/C39930000557

7. Title: CRYSTALLIZATION OF ZEOLITE BETA – EFFECT OF NA AND K-IONS
Author(s): CAMBLOR, MA; PEREZPARIENTE, J
Source: ZEOLITES Volume: 11 Issue: 3 Pages: 202-210 Published: MAR 1991
Times Cited: 147
doi:10.1016/S0144-2449(05)80220-9

8. Title: Characterization of nanocrystalline zeolite Beta
Author(s): CAMBLOR, MA; CORMA, A; VALENCIA, S
Source: MICROPOROUS AND MESOPOROUS MATERIALS Volume: 25 Issue: 1-3 Pages: 59-74 Published: DEC 9 1998
Times Cited: 137
doi:10.1016/S1387-1811(98)00172-3

9. Title: Synthesis of all-silica and high-silica molecular sieves in fluoride media
Author(s): CAMBLOR, MA; VILLAESCUSA, LA; DIAZ-CABANAS, MJ
Source: TOPICS IN CATALYSIS Volume: 9 Issue: 1-2 Pages: 59-76 Published: 1999
Times Cited: 110
doi: 10.1023/A:1019154304344                       digital.csic

10. Title: Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25
Author(s): CAMBLOR, MA; CORMA, A; DIAZ-CABANAS, MJ; et al.
Source: JOURNAL OF PHYSICAL CHEMISTRY B Volume: 102 Issue: 1 Pages: 44-51 Published: JAN 1 1998
Times Cited: 110
doi: 10.1021/jp972319k

11. Title: Synthesis of nanocrystalline zeolite Beta in the absence of alkali metal cations
Author(s): CAMBLOR, MA; CORMA, A; MIFSUD, A; et al.
Source: PROGRESS IN ZEOLITE AND MICROPOROUS MATERIALS, PTS A-C Volume: 105 Pages: 341-348 Published: 1997
Times Cited: 98
doi:10.1016/S0167-2991(97)80574-5

12. Title: INFLUENCE OF THE SYNTHESIS CONDITIONS ON THE CRYSTALLIZATION OF ZEOLITE BETA
Author(s): CAMBLOR, MA; MIFSUD, A; PEREZPARIENTE, J
Source: ZEOLITES Volume: 11 Issue: 8 Pages: 792-797 Published: NOV-DEC 1991
Times Cited: 96
doi:10.1016/S0144-2449(05)80057-0

13. Title: Spontaneous nucleation and growth of pure silica zeolite-beta free of connectivity defects
Author(s): CAMBLOR, MA; CORMA, A; VALENCIA, S
Source: CHEMICAL COMMUNICATIONS Issue: 20 Pages: 2365

 
Comentarios desactivados

Posted in Members

 

Adolfo González Grushin (Fito)

19 sep

Within Experimental Error ‘s guitar, trumpet and vocals, guitar and leading vocals in the band The Malayan Gypsies and trumpet and vocals in Schizzofunk, in his spare time he enjoys studying theoretical physics of all kind  (Condensed matter in particular) at the Instituto de Ciencia de Materiales de Madrid where he is currently completing his Ph.D. His research interests are currently graphene and related materials such as Topological Insulators.

You can find a complete list of his publications here.

Guitarra Trompeta y voz del Grupo Within Experimental Error, guitarra y voz en la banda The Malayan Gypsies y trompetista y voz de Schizzofunk, en sus ratos libres se dedica al estudio de la Física Teórica de todas las clases y en partícular Físca de la Materia Condensada en el Instituto de Ciencia de Materiales de Madrid donde está completando su tesis doctoral. Actualmente su investigación está centrada en el campo del grafeno y materiales relacionados en particular los Aislantes Topológicos.

Podéis encontrar una lista completa de sus publicaciones aquí.

 
No Comments

Posted in Members

 

Alexander Borodin

19 sep


A member, with Mussorsgky, Cui, Rimsky-Korsakov and Balakirev of the group of russian composers known as The Five, Alexander Borodin has gone down in history as a great composer, although this was not his profession. A doctor of medicine, Borodin was in fact a highly prestigious chemist and professor of Chemistry at the Academy of Medicine of Saint Petersburg. He investigated aldehydes, benzene derivatives, organic halides and amides. He is credited as the co-discoverer (with Wurtz, though independently) of the aldol reaction, a reaction between carbonilic compounds that affords new carbon-carbon bonds.

As a musician, he stood out within the Russian romantic nationalist movement through his three symphonies, two string quartets, the symphonic poem In the Steppens of Central Asia and the opera Prince Igor. His Polovtsian Dances, included in that opera, are often performed independently. Borodin was also a reputed cellist.

Apparently, both musicians and chemists alike blamed him for staying for too long “on the other side”.


Miembro, con Mussorsgky, Cui, Rimsky-Korsakov y Balakirev del Club de los Cinco, Alexander Borodin (1833-1887) ha pasado a la historia como un gran compositor, a pesar de no ser ésta su profesión. Doctor en medicina, Borodin fue de hecho un químico de gran prestigio y profesor de esta disciplina en la Academia de Medicina de San Petersburgo. Investigó sobre aldehídos, derivados bencénicos, haluros orgánicos y amidas. Fué codescubridor (junto a Wurtz, pero independientemente) de la reacción aldólica, una reacción entre compuestos carbonílicos que permite crear enlaces carbono-carbono.

Como músico, Borodin destacó dentro del movimiento romántico nacionalista ruso por sus tres sinfonías, dos cuartetos de cuerda, el poema sinfónico En las Estepas del Asia Central y la ópera El Príncipe Igor. Sus Danzas Polovtsianas, parte de la ópera mencionada, son ejecutadas a menudo de forma independiente. Borodin fue, además, un reputado chelista.

Al parecer, músicos y químicos le acusaron por igual de pasar demasiado tiempo “en el otro lado”.

 

William Herschel

19 sep

Considered the father of modern Astronomy, discoverer of planet Uranus and of infrared radiation, Sir William Herschel (1738-1822) arrived to England from his homeland, Germany, as a multifaceted musician and composer. A virtuous of the oboe, the harpsichord, the organ, the violin and the cello and author of 24 symphonies and many concertos, Herschel was the head of the Bath orchestra, first organist at the St John the Baptist church in Halifax, first violin of the Newcastle orchestra and head of the Durham Militia band.

As an astronomer, Herschel, that used to make his own lenses and telescopes, discovered Uranus and two of its moons, as well as two moons of Saturn. He also demonstrated that double stars are not an optical illusion, as it was believed. He also studied the Milky Way, deducing it is disc-shaped, and co-discovered Mars’ ice caps and their seasonal changes.

Researching on the calorific power of sunlight, Herschel used a prism to disperse a sunlight beam and thermometers to check the heating produced by each color. Observing that thermometers got hotter going towards the red, Herschel was bold enough to place a thermometer beyond that color (despite statements from different sources, Herschel papers do not tell that he was measuring by chance the temperature of the room in that region, but rather that his curiosity and boldness made him check it). Seeing that beyond the red and the visible spectrum (“prismatic spectrum”) there was an enhanced heating, Herschel deduced there had to be a form of invisible light with a large heating power (his “calorific rays” that we now call “infrared radiation” and that Herschel distinguished from the “colourific rays”).

In what follows, sentences in boldface reflect the astonishment of this entry’s author:
“…it is evident that radiant heat is subject to the laws of refraction, and also to those of the different refrangibility of light. May not this lead us to surmise, that radiant heat consists of particles of light of a certain range of momenta, and which range may extend a little farther, on each side of refrangibility, than that of light? We have shewn, that in a gradual exposure of the thermometer to the rays of the prismatic spectrum, beginning from the violet, we come to the maximum of light, long before we come to that of heat, which lies at the other extreme. By several experiments, which time will not allow me now to report, it appears’ that the maximum of illumination has little more than half the heat of the full red rays; and, from other experiments, I likewise conclude, that the full red falls still short of the maximum of heat; which perhaps lies even a little beyond visible refraction. In this case, radiant heat will at least partly, if not chiefly, consist, if I may be permitted the expression, of invisible light[1]

And would these rays be of a different nature from that of visible light? Herschel sensibly uses Okham’s Razor: “if we call light, those rays which illuminate objects, and radiant heat, those which heat bodies, it may be inquired, whether light be essentially different from radiant heat? In answer to which I would suggest, that we are not allowed, by the rules of philosophizing, to admit two different causes to explain certain effects, if they may be accounted for by one.”[2] For Herschel both types of rays have the same nature and their difference comes from their distinct perception due to the different interaction with the visual organs: eye “admits” sunlight beams contained in the “prismatic spectrum” appearing as light and colors, while aqueous humour and the eye’s coatings, as other parts of the body, absorb the rays contained in the “thermometric spectrum” beyond the “prismatic” one, being thus not visible, but providing a heat feeling.

After that, we can only take our hat off, with astonishment and admiration, to the genius and boldness of this great musician-scientist.

Herschel was a member of the Royal Society and Astronomer of the King. Among many tributes (honoring him and his sister and collaborator, the soprano and astronomer Caroline Herschel), the European Space Agency named after him the Herschel Space Observatory, an infrared and submillimetre telescope with the largest single mirror ever built for a space telescope (3.5 m).


Considerado el padre de la astronomía moderna, descubridor del planeta Urano y de la radiación infrarroja, Sir William Herschel (1738-1822) llegó a Inglaterra desde su Alemania natal como músico multinstrumentista y compositor. Un virtuoso del oboe, clavicordio, órgano, violín y chelo y autor de 24 sinfonías y numerosos conciertos, Herschel fue director de la orquesta de Bath, primer organista de la iglesia de San Juan Bautista de Halifax, primer violin de la orquesta de Newcastle y director de la banda militar de Durham.

Como astrónomo, Herschel, que fabricaba sus propias lentes y telescopios, descubrió Urano y dos de sus lunas, así como dos de las lunas de Saturno. Demostró, además, que las estrellas dobles no son un efecto óptico, como se creía. También estudió la Vía Láctea, concluyendo su forma de disco, y codescubrió los casquetes polares de Marte y sus variaciones estacionales.

Investigando sobre el poder calórico de la luz solar, Herschel usó un prisma para descomponer un rayo de sol y termómetros para observar el calentamiento que producía cada color. Al observar que los termómetros se calentaban más al ir hacia el rojo, Herschel fue suficientemente atrevido como para colocar un termómetro aún más allá (pese a lo que se dice en muchas fuentes, los artículos de Herschel, ver abajo, no relatan que estuviera midiendo por casualidad la temperatura de la habitación en esa zona, sino que su curiosidad y atrevimiento le llevaron a hacer la comprobación). Al observar que más allá del rojo y del espectro visible (“espectro prismático”) había un calentamiento mayor aún, Herschel concluyó que debía haber una forma de luz invisible y con gran poder calórico (los “rayos caloríficos” que hoy llamamos “radiación  infrarroja”, y que Herschel distinguió de los “rayos coloríficos”).

En lo que sigue, las negritas son del estupefacto redactor de esta entrada:

“…it is evident that radiant heat is subject to the laws of refraction, and also to those of the different refrangibility of light. May not this lead us to surmise, that radiant heat consists of particles of light of a certain range of momenta, and which range may extend a little farther, on each side of refrangibility, than that of light? We have shewn, that in a gradual exposure of the thermometer to the rays of the prismatic spectrum, beginning from the violet, we come to the maximum of light, long before we come to that of heat, which lies at the other extreme. By several experiments, which time will not allow me now to report, it appears’ that the maximum of illumination has little more than half the heat of the full red rays; and, from other experiments, I likewise conclude, that the full red falls still short of the maximum of heat; which perhaps lies even a little beyond visible refraction. In this case, radiant heat will at least partly, if not chiefly, consist, if I may be permitted the expression, of invisible light[1]

¿Y serán esos rayos de naturaleza distinta a la de la luz visible? Herschel usa muy atinadamente la navaja de Okham: “if we call light, those rays which illuminate objects, and radiant heat, those which heat bodies, it may be inquired, whether light be essentially different from radiant heat? In answer to which I would suggest, that we are not allowed, by the rules of philosophizing, to admit two different causes to explain certain effects, if they may be accounted for by one.”[2] Para Herschel ambos tipos de rayos poseen la misma naturaleza y lo que cambia es su percepción debido a su distinta interacción con los órganos de la visión: el ojo “admite” los rayos del sol contenidos en el “espectro prismático” bajo la apariencia de luz y colores, mientras que el humor acuoso y los recubrimientos del ojo, como otras partes del cuerpo, absorben los rayos contenidos en el “espectro termométrico” más allá del “prismático”, no siendo así visibles, pero dando sensación de calor.

Después de lo cual no queda más que descubrirse, con asombro y admiración, ante el genio y atrevimiento de este gran músico-científico.

Herschel fué miembro de la Royal Society y Astronomer of the King. Entre otros mucho homenajes (a él y a su hermana y colaboradora, la soprano y astrónoma Caroline Herschel), la Agencia Espacial Europea dió el nombre de este astrónomo al Observatorio Espacial Herschel, un telescopio de infrarrojos y longitudes de ondas submilimétricas con el mayor espejo construido para un telescopio espacial (3,5 m).

[1] W. Herschel, Philosophical Transactions of the Royal Society of London, Vol. 90 (1800), pp. 255-283
[2] W. Herschel, Philosophical Transactions of the Royal Society of London, Vol. 90 (1800), pp. 284-292

 

Fletcher Henderson

19 sep


Holding a BSc degree in Chemical Science from Atlanta University in Atlanta, Georgia, Fletcher Henderson (1897-1952) moved to New York to attend Columbia University for a master’s degree in Chemistry. However, faced with the bad professional prospects of a chemist of black race in the America of the 1920’s, he turned to develop one of the most influential musical careers in the history of Jazz.

A pianist, composer, arranger and band leader, his orchestra was the first established Big Band settled in New York and, for some, the most important one in history (in open rivalry with Duke Ellington’s). Henderson’s work as an arranger (for his own band but also for others’, notably Benny Goodman’s) is considered as the main contribution to the development of a coherent style of Jazz orchestration. First order musicians such as Louis Armstrong, Roy Eldridge, Benny Carter and Coleman Hawkins stood out on their own in Henderson’s orchestra, set apart form the rest by its powerful combination of arrangements and improvisations. For many critics it was Henderson, and not Benny Goodman, the true King of Swing.

Licenciado en Ciencias Químicas por la Universidad de Atlanta, Georgia, Fletcher Henderson (1897-1952) se trasladó a Nueva York para  proseguir sus estudios con un master por la Universidad de Columbia. Sin embargo, las malas perspectivas profesionales para un químico de raza negra en la América de 1920 le llevaron a desarrollar una carrera musical de enorme influencia en la historia del Jazz.

Pianista, compositor, arreglista y director de orquesta, la suya fue la primera Big Band importante establecida en Nueva York y, para algunos, la más importante de la historia (en abierta competencia con la de Duke Ellington). El trabajo como arreglista de Henderson (para su propia banda pero también para otras, especialmente la de Benny Goodman) se considera la principal contribución al desarrollo de un estilo coherente de orquestación jazzística. En su orquesta, que destacó por la poderosa combinación de arreglos e improvisación, brillaron músicos de la talla de Louis Armstrong, Roy Eldridge, Benny Carter y Coleman Hawkins. Para muchos críticos Henderson, y no Goodman, fue el auténtico Rey del Swing.

 

Vincenzo Galilei

19 sep


A professional musician, lutenist, composer and music theorist, Vincenzo Galilei deserves an outstanding place in the history of science as a co-discoverer, through experimentation, of one of the first non-linear relations known in physics.

Pythagorean tradition holded that two strings vibrating consonantly have lengths (at equal tension applied) or tensions (at equal length) in a ratio of simple whole numbers and that the pitch depends linearly on length and tension. Vincenzo Galilei’s experiments led him to conclude that this is true with regard to the lengths but is not with regard to the tension applied. For the same tension applied, two strings will vibrate in an octave interval if their lengths are in a 1:2 ratio (and the interval will be a perfect fifth if the ratio were 2:3). However, two strings of equal length will produce an octave when the tensions applied, for instance through weighing scales, are in a 1:4 ratio (4:9 for a perfect fifth). That is to say that the pitch of sound (or, better, its frequency) is inversely poportional to the length of the string and linearly proportional to the square root of the tension (if the linear density of the string is held constant).

The most renowned sons of Vincenzo Galilei inherited his musical ability (Michelagnolo, a composer) and analytical and empirical capacity (Galileo). By the end of the first day of his Dialogue Galileo reflects on musical consonance and dissonance in terms of frequencies and its effect on the eardrum, also describing his father’s findings.


Músico de profesión, laudista, compositor y teórico de la música, a Vincenzo Galilei (ca. 1520-1591)  habría que concederle un puesto destacado en la historia de la ciencia, como descubridor, mediante la experimentación, de una de las primeras relaciones no lineales de la física.

La tradición pitagórica establecía que dos cuerdas vibrando en intervalos consonantes tienen longitudes (a igual tensión) o tensiones (a igual longitud) en una relación de números enteros sencillos y que la altura de sonido depende directamente de longitud y tensión. Los experimentos de Vincenzo Galilei le llevaron a concluir que, si bien eso es cierto para la longitud, no lo es para la tensión. Dos cuerdas sometidas a igual tensión darán, por ejemplo, un intervalo de octava si sus longitudes están en una relación 1:2 (y el intervalo será de quinta si la relación es 3:2). Sin embargo, dos cuerdas de igual longitud darán una octava justa cuando se las somete, por ejemplo mediante pesos, a tensiones en una relación 1:4 (que será 9:4 para una quinta). Es decir, la altura de sonido (o, mejor dicho, la frecuencia) es inversamente proporcional a la longitud de la cuerda y directamente proporcional a la raíz cuadrada de la tensión (si se mantiene constante la masa por unidad de longitud).

Los dos hijos más famosos de Vincenzo heredaron su capacidad musical (Michelagnolo, compositor) y analítica y experimental (Galileo). Al final de la primera jornada de sus Diálogos, Galileo reflexiona sobre la consonancia y disonancia en música en términos de frecuencias y de su efecto sobre el tímpano, y recoge también el hallazgo de su padre.

 

The Chicken

11 sep

W.E.E. performing at CSIC’s auditorium, July 2009

 
 

Within Experimental Error-The Movie

09 sep

Well, is not really a movie but a clip about the band edited by CSIC: