Seminars and Events

Seminars and Events

Nanostructures, Surfaces, and Coatings and Molecular Astrophysics

Coordinator: Rául Gago

05 October 2018, 12:00 h. Sala de Seminarios, 182

Tracking a cell’s mass in real time: a new indicator of cell physiology

David Martínez-Martín
Eidgenössische Technische Hochschule (ETH) Zurich, Switzerland

Regulation of cell volume and mass is physiologically important for living organisms and dysregulation of these parameters is at the origin of many different diseases. Cell mass mainly comprises intracellular water, proteins, lipids, carbohydrates and nucleic acids and is tightly liked to metabolism, proliferation and gene expression. However, the mechanisms that regulate cell mass remain largely unknown.
Flow cytometers and Coulter devices are among the most commonly used technologies to characterize the volume of suspended cells. However, most mammalian cells are adherent and behave considerably different in the suspended and adherent state. Therefore, one should be able to determine the volume and/or mass in the adherent state. Over the recent years powerful technologies have emerged to track the mass of single suspended and adherent cells. However, it has not been possible to track individual adherent cells in physiological conditions at the mass and time resolution required to observe fast cellular dynamics.
I will introduce a picobalance that we have developed, which is based on an optically excited microresonator. It measures the mass of single or multiple adherent cells in culture conditions over days at millisecond time resolution and picogram (0.1% of cell mass) mass sensitivity. I will also present some results we have obtained using this technology, including the detection of fast and subtle mass fluctuations that seem to be universal to living mammalian cells. Our approach is easy to operate and compatible with state-of-the-art optical microscopies, therefore we anticipate it will contribute to the understanding of cell mass regulation.

02 February 2018, 12:00 h. Sala de Seminarios, 182

Alta-Integración en la Red Eléctrica de las Energías Renovables Intermitentes (eólica, solar-FV y solar CSP)

José Manuel Martínez-Duart
Presidente del GE-Energía de la RSEF, Senador de la E-MRS

En Europa el sector industrial que produce un mayor porcentaje de emisiones de CO2 es el sector de generación de electricidad con cerca del 25% del total. La hoja de ruta para el año 2050 de la Unión Europea (UE) tiene como objetivo que dicha proporción se acerque a cero. Para ello se propone la instalación de un gran porcentaje de solar (FV y CSP) y de eólica que representen entre ellas, en el caso de España, hasta un 70% de la demanda anual total. Debido a la variabilidad e intermitencia características de este tipo de renovables (VRES) implicaría que en ciertos períodos podría sobrar electricidad mientras que en otros faltaría. Aunque esto se podría solucionar, respectivamente, con técnicas de almacenamiento de electricidad (storage) y con plantas de generación de respaldo (backup), sin embargo, las técnicas de almacenamiento son todavía muy caras y las de respaldo necesitan utilizar combustibles fósiles por lo que ambas deben minimizarse. En esta presentación se expone un método de Optimización por Programación Lineal que da la mejor proporción de VRES, que simultáneamente minimiza los surpluses y los respaldos. A partir de estos resultados se proponen algunas recomendaciones sobre varios aspectos de la hoja de ruta de la futura transición energética en España.

16 January 2018, 12:00 h. Sala de Seminarios, 182

Characterization of organic self-assembled monolayers using bimodal
Atomic Force Microscopy

Evangelia-Nefeli Athanasopoulou
École Polytechnique Fédérale de Lausanne, Switzerland

Self-assembled monolayers (SAMs) are one of the most attractive methods of surface modification, as they are highly versatile and their manufacturing approach is easy to scale up. One of their key features is molecular ordering, which, however, is difficult to determine experimentally.
Bimodal AFM was used as a novel approach for the characterization of SAMs’ ordering, via its correlation to surface elasticity.
Alkanethiol SAMs on Au (111) were used as a model system. Surface elasticity has been reliably determined and found to be ligand-length dependent. A similar investigation has been extended to the characterization of octadecylphosphonic acid SAMs on Al2O3. Monolayer formation and ordering as a function of formation time were determined via surface elasticity.
The characterization method was then extended to provide localization of the chemical
species present in thiolated binary SAMs. Within the systems tested phase separation down to ~10 nm domains could be observed both in the topography and in the elasticity channel, allowing, for the first time, the chemical identification of the domains.


ICMM-2018 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain. Tel: +34 91 334 9000.