Seminars and Events

Seminars and Events


Coordinators: Silvia Gallego, Concepción Gutiérrez

09 January 2018, 12:00 h. Salón de Actos

Celebrating the Nobel Prize in Chemistry 2017
“Cryoelectron microscopy: the coming of age of a structural biology technique”

José María Valpuesta
Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain

Electron microscopy has been instrumental in the development of cellular and molecular biology over the last decades thanks to its use as a descriptive technique, capable of visualizing cellular and subcellular structures. However, although it is known since the 60s that electron microscopy is in principle capable of determining the structure of biological molecules even at atomic resolution, technical limitations had made this goal almost beyond reach. After a lengthy period of steady changes, however, a series of recent instrument developments and improved computer implementations has led to a revolution in the application of electron microscopy to structural biology, the so called “resolution revolution”. The awards to Jacques Dubochet, Joaquim Frank and Richard Henderson of the Nobel Prize in Chemistry 2017 give credit to some of the scientists who have made this revolution possible.

11 December 2017, 12:00 h. Salón de Actos

Emergent quantum phases in relativistic magnetic oxides

Cesare Franchini
University of Vienna

Electronic (metal-to-insulator) and magnetic transitions are one of the most important phenomena in solid-state physics and their fundamental understanding represent an enduring challenge in solid state theory. In classical and widely studied 3d transition metal oxide systems, the underlying physics is typically described within the Mott-Hubbard model as a competition between electron-electron interaction and electronic mobility (bandwidth) in a static spin background. When moving to the more spatially extended 4d and 5d orbitals the electron-electron correlation decreases to the same energy scale of the spin-orbit coupling, pushing the systems towards a more itinerant electron/spin picture. This unusual situation represents a novel paradigm in contemporary condensed matter physics and give rise to a large variety of exotic states. The most striking examples are: Dirac-Mott, Slater and Lifshitz insulators, non-trivial topological phases and anisotropic spin-exchange interactions.
In this Colloquium, we shall provide a general introduction and overview on the importance of spin-orbit coupling effects in the electronic and magnetic properties of materials and discuss a few examples of practical realization of novel quantum states of matter in 5d (iridates and osmathes) and 4d (ruthanates and vanadates) magnetic oxides. The results are primary based on (first principles) density functional theory calculations and (second-principles) extended spin Hamiltonians.

20 November 2017, 12:00 h. Salón de Actos

CANCELLED-The Nobel Prize in Physics 2017: Spacetime ripples and flashes of light

José Antonio Font
Universidad de Valencia

On September 14 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected the first gravitational-wave signal, GW150914. This historical discovery confirmed a century-old prediction of Einstein’s theory of general relativity - the very existence of gravitational waves - and opened an entirely new way to study the cosmos. American scientists Rainer Weiss, Barry C. Barish, and Kip S. Thorne were awarded the Nobel Prize in Physics for the accomplishment. The breakthrough detection of the tiny ripples of spacetime generated when two black holes collide has been subsequently followed by three additional detections of binary black hole signals, GW151226, GW170104, and GW170814. The latter was jointly detected by LIGO and the European interferometer Virgo, which greatly enhanced the sky localization of the event. Only three days after the last binary black hole detection, the LIGO/Virgo detectors accomplished another tremendous achievement with the first observation of gravitational waves from a binary neutron star coalescence, GW170817. This time around, the spacetime ripples produced during the inspiral and merger of the two neutron stars were accompanied by flashes of light across the entire electromagnetic spectrum, and triggered an unprecedented multi-instrument observational campaign which has just opened the era of multi-messenger astronomical observations. This talk will discuss what are gravitational waves and how they are produced. It will also explore the theoretical and experimental efforts that have finally made possible the detection of gravitational waves, winding-up Einstein’s magnificent intellectual legacy on the centenary of the formulation of his theory of general relativity.

19 October 2017, 12:00 h. Salón de Actos, Instituto de Cerámica y Vidrio

Functionalized Hybrid Nanomagnets:
New Materials for Innovations in Energy Storage and
Medical Theranostics

Michael Farle
U. Duisburg-Essen, Germany & Immanuel Kant Baltic Federal U., Russia

Imagine a future in which food is used to activate specific immune reactions in a human body based on an external noninvasive magnetic stimulus. Dream of a material that stores and releases energy reversibly by temperature changes between day and night. These visions may be realized by using magnetic nanoparticles that are functionalized to be biocompatible, environmentally stable and recyclable, self-healing, and low-cost. In this presentation I will discuss the basic concepts of magnetic nanomaterials with a focus on how to tune and control specific parameters. I will highlight state-of-the-art experimental technologies that allow us to understand microscopic properties and interactions in relation to electronic structure changes. Then I will discuss how this understanding is used when nanomagnets are functionalized for targeted drug delivery or composed to form macroscopic materials for new energetic applications like magnetic refrigeration. I will demonstrate that the seemingly complex behavior of hybrid interface materials can be understood from the three fundamental interactions in magnetism: magnetic exchange interaction due to orbital overlap, spin-orbit interaction due to inner- and intra-atomic relativistic corrections (e.g., crystal field effects) and the long-range magnetic dipolar interaction. Several examples will be presented, including the formation of above-room-temperature ferromagnetic interface layers between low-temperature antiferromagnetic layers and the evolution of lattices of magnetic textures (skyrmions) in confined dimensions. The talk will end with an episode in the life of an imaginary golf-playing couple in the year 2040 who use their “Smart Magnet” (SMAG) phone to energize and heal their bodies on the green.

25 September 2017, 12:00 h. Salón de Actos

Líquidos Iónicos en Tribología e Ingeniería de Superficies

María Dolores Bermúdez Olivares
Grupo de Ciencia de Materiales e Ingeniería Metalúrgica (Univ. Cartagena, Spain)

Los aceites lubricantes son imprescindibles en transporte y producción de energía, entre otros sectores estratégicos. La reducción de las pérdidas de energía por fricción y de los fallos por desgaste supondría un ahorro de varios puntos porcentuales del PIB. Sin embargo, tanto los aceites minerales como los sintéticos con aditivos que contienen metales pesados, haluros, fósforo o azufre deben ser sustituidos por lubricantes menos contaminantes sin perder su efectividad.
Se están estudiando nuevas aplicaciones de líquidos iónicos (ILs) comerciales y de nueva síntesis en tribología, nanotecnología e ingeniería de superficies. Los ILs dan lugar a películas ordenadas adsorbidas sobre las superficies en deslizamiento, que se utilizan para obtener nuevos materiales autolubricados. La modificación de nanofases por ILs da lugar a los llamados nuevos nanofluidos iónicos.
Los nuevos ILs y los nuevos nanofluidos se estudian como lubricantes y aditivos de lubricantes, para la reducción de los coeficientes de fricción y de las tasas de desgaste en condiciones severas de presión de contacto, velocidad y temperatura.
Los nuevos lubricantes y aditivos deben estar basados en ILs libres de elementos tóxicos y contaminantes. La incorporación de los nanofluidos a matrices de polímeros ha abierto una nueva línea de investigación que ha dado lugar a nuevos nanocomposites con propiedades mejoradas, incluso con capacidad de autorreparación del daño superficial producido por abrasión.
También se desarrollan recubrimientos protectores sobre aleaciones ligeras de baja resistencia al desgaste y de difícil lubricación debido a su alta reactividad, así como films y recubrimientos sobre otros sustratos como polímeros y aceros.

19 July 2017, 12:00 h. Salón de Actos

Complex Materials Through Self-Assembly Initiated by Small Molecules: Reversible Ionic Liquids, Rubbery Polymers, Ambidextrous Gelators

Richard G. Weiss
Georgetown University. Washington DC. USA

In this talk, Prof. Weiss will present a synopsis of his group research in which a triatomic molecule, CO2 or CS2 , or a simple alkanoic acid has been added to isotropic liquids or polymers to create materials with interesting swelling, adhesive and viscoelastic properties. The scope of the materials produced and aspects of their structural, spectroscopic, and dynamic (viscoelastic) properties will be discussed.

Prof. Weiss is a recognized expert in organic chemistry and photochemistry applied to different materials, including ionic liquids, gels and polymers. He has developed experimental techniques which employ anisotropic solvents to molecular and polymer reactions, using them to create molecular switches and devices, and to characterize novel molecular phases. Some of his work, e.g. on gels, is also exploited for art conservation. He leads a highly interdisciplinary group at Georgetown University devoted to research on molecular gels, polymer networks and photochemistry.

06 June 2017, 12:00 h. Salón de Actos

Nuestros ojos sufren el exceso de luz por el uso de nuevas tecnologías

Celia Sánchez Ramos
Universidad Complutense de Madrid

La luz, necesaria para la visión, puede producir efectos tóxicos sobre los tejidos oculares. Los daños producidos por el ultravioleta y el infrarrojo son bien conocidos por todos. Sin embargo, aunque ya en 1965, Noell describió los efectos nocivos que la luz violeta y azul produce sobre la retina, hasta ahora no se ha evolucionado en el estudio de sistemas de protección contra esta luz. El sistema visual, de forma fisiológica, protege la retina, mediante tres mecanismos: cromóforos amarillos del cristalino, ausencia de conos S y pigmento macular, sin embargo este proceso natural de autodefensa se debilita por el envejecimiento, produciendo un aumento del riesgo de degeneración retiniana. Si a este hecho se añade que la tecnología actual (tablets, smartphones, ordenadores y televisores) obliga a mirar directamente una pantalla emisora de luz, de forma masiva y continuada, el riesgo de daños oculares aumenta de forma exponencial. ¿Se puede reforzar, de forma artificial, las defensas fisiológicas oculares para cuidar la salud visual? En esta exposición se resolverá, en parte, esta interrogante.

08 May 2017, 12:00 h. Salón de Actos

The origins of life under a systems chemistry perspective

Carlos Briones
Department of Molecular Evolution. Centro de Astrobiología (CSIC-INTA)

Living systems combine the ability to: i) keep their molecular components together and distinguish themselves from their environment; ii) stay away from thermodynamic equilibrium by capturing energy and material resources from such an environment; and iii) transmit heritable information to their progeny. Therefore, in the transition from chemistry to biology membrane compartments, metabolic machineries and genetic mechanisms should have originated and combined in order for life to appear and evolve.
Different scientific traditions in prebiotic chemistry and other fields have dealt with partial aspects of the complex problem of the origins of life, using diverse conceptual frameworks and experimental settings. However, the physicochemical mechanisms involved in the formation of the infra-biological subsystems often turned out to be incompatible. Alternatively, the consideration of higher levels of molecular heterogeneity and the use of systems chemistry-based approaches provide a more realistic scenario for the origins of life, involving aqueous solutions of different monomers and oligomers, metal and mineral catalysts, or reactive interfaces with water-based media.
Following this systems approach, the traditional replication-first vs. metabolism-first controversy is substituted by a heterogeneous scenario in which all the basic molecules co-evolved from the beginning. This integrative approach could help explain the transition from complex (though still thermodynamically driven) chemical systems into proto-biological ones and, eventually, into full-fledged living organisms where kinetic and spatial control of reactions took over.
K Ruiz-Mirazo, C Briones, A de la Escosura. Chemical Reviews 114 (2014) 285.
K Ruiz-Mirazo, C Briones, A de la Escosura. Open Biology (2017, in press).

24 April 2017, 12:00 h. Salón de Actos

¿Contar la Ciencia a Profanos?
Por qué, Cómo y un Ejemplo.

Dr. Joaquín Sevilla Moróder
Responsable de Divulgación del Conocimiento de la Universidad Pública de Navarra

Aunque últimamente se está poniendo de moda la divulgación científica no es evidente que sea una tarea a la que deba dedicarse cualquier persona profesional de la investigación. Por otro lado parece que la rendición de cuentas que la investigación pública le debe a la sociedad sí que pasa por tareas de divulgación.

Comenzando sobre estas cuestiones, la charla continuará analizando públicos, agentes y medios para la divulgación y concluirá con un breve ejemplo de la línea de investigación del ponente.

Joaquín Sevilla es profesor titular de Universidad Pública de Navarra (UPNA) del área de Tecnología Electrónica. También ha dedicado bastante tiempo a la gestión universitaria, (como vicerrector de Nuevas Tecnologías e Innovación Educativa de la UPNA o director del Campus Virtual Compartido del G9) siendo desde 2016 Responsable de Divulgación del Conocimiento de la UPNA. Interesado por la popularización y divulgación de la Ciencia, participa en iniciativas como Ciencia en el Bar (que incluye vídeos, eventos y espacios en la radio), escribe artículos para la plataforma de blogs científicos Naukas y pertenece a la junta directiva del Club de Amigos de la Ciencia.
Asimismo, es miembro fundador de la Asociación Universidad y Discapacidad, una entidad surgida en la UPNA y formada por miembros de la comunidad universitaria con el objetivo de concienciar sobre la importancia de realizar esfuerzos académicos e investigadores en el campo de la discapacidad.

13 March 2017, 12:00 h. Salón de Actos

Celebrating the Nobel Prize in Physics 2016
Quantum Physics with Topology produces new states of matter

Miguel A. Martín Delgado
Universidad Complutense de Madrid

The Nobel Prize in Physics 2016 has been awarded to Thouless, Haldane and Kosterlitz for their pioneering work on topological phase transitions and topological phases of matter. This lecture is a gentle introduction to these topics aiming to reach a broad audience. Basic concepts will be introduced in an accessible manner. Historical background will be also provided along with some anecdotes.

06 February 2017, 12:00 h. Salón de Actos

“Las mujeres que abrieron las puertas del cielo”
Celebrando el Día Internacional de la Mujer y la Niña en Ciencia

Miguel A. Delgado
Periodista, escritor y divulgador independiente

Aunque no abundantes, ha habido desde la Antigüedad mujeres que han contribuido a la astronomía. Pero en el siglo XIX, y en Estados Unidos, hubo una extraordinaria serie de ellas que abrieron la puerta a los grandes descubrimientos que revolucionaron nuestra visión del universo. Conoceremos sus nombres y sus aportaciones.

Miguel A. Delgado ha escrito varios libros sobre divulgación e historia de la Ciencia. Recientemente ha publicado “Las calculadoras de estrellas” (ed. Destino, 2016), donde recoge la fascinante historia de estas astrónomas pioneras.

16 January 2017, 12:00 h. Salón de Actos

Celebrating the Nobel Prize in Chemistry 2016.
Mechancially Interlocked Molecules, Molecular Machines and Carbon Nanotubes

Dr. Emilio M. Pérez
IMDEA Nanociencia; Ciudad Universitaria de Cantoblanco, Madrid, Spain

The Nobel Prize in Chemistry 2016 was awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart and Ben L. Feringa for the “design and synthesis of molecular machines”. In this colloquium, I will provide a brief introduction to the synthesis of mechanically interlocked molecules and the physical principles behind the synthesis of molecular machines.
The colloquium will continue with a presentation of our own research efforts in the synthesis of mechanically interlocked derivatives of carbon nanotubes. We will present a general strategy for the synthesis of rotaxane-type derivatives of carbon nanotubes, the first example of mechanically interlocked derivatives of SWNTs (MINTs). [1] In the key rotaxane-forming step, we employ U-shaped macrocycle precursors equipped with two recognition units and terminated with bisalkenes that were closed around the nanotubes through ring-closing metathesis (RCM). The mechanically interlocked nature of the derivatives is probed by analytical, spectroscopic, and microscopic techniques, as well as by appropriate control experiments. Remarkably, bulk reaction data confirm the interlocked nature of MINTs. [2] We will also show that the effect of the mechanical bond on the properties of SWNTs is unique, and clearly different from the noninterlocked, supramolecular compounds. [3]

[1] a) Nanoscale 2013, 5, 7141; b) Angew. Chem., Int. Ed. 2014, 53, 5394; c) Chem. Commun. 2015, 51, 5421; d) Chem. Sci. 2017, DOI: 10.1039/C6SC03894H
[2] ChemPlusChem 2015, 80, 1153.
[3] Nanoscale, 2016, 8, 9254.


ICMM-2017 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain. Tel: +34 91 334 9000.